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Abstract

In this paper, we propose a computational framework for
integrating the physics of motion with the neurobiological
basis of perception in order to model and recognize human
actions and object activities. The essence, or gist, of an ac-
tion is intrinsically related to the motion of the scene’s ob-
jects. We define the Hamiltonian Energy Signature (HES)
and derive the S-Metric to yield a global representation of
the motion of the scene’s objects in order to capture the
gist of the activity. The HES is a scalar time-series that
represents the motion of an object over the course of an
activity and the S-Metric is a distance metric which charac-
terizes the global motion of the object, or the entire scene,
with a single, scalar value. The neurobiological aspect
of activity recognition is handled by casting our analysis
within a framework inspired by Neuromorphic Computing
(NMC), in which we integrate a Motion Energy model with
a Form/Shape model. We employ different Form/Shape rep-
resentations depending on the video resolution but use our
HES and S-Metric for the Motion Energy approach in ei-
ther case. As the core of our Integration mechanism, we
utilize variants of the latest neurobiological models of fea-
ture integration and biased competition, which we imple-
ment within a Multiple Hypothesis Testing (MHT) frame-
work. Experimental validation of the theory is provided on
standard datasets capturing a variety of problem settings:
single agent actions (KTH), multi-agent actions, and aerial
sequences (VIVID).

1. Introduction
Understanding activities is intuitive for humans. From birth,
we observe physical motion in the world around us and cre-
ate perceptual models to make sense of it. Neurobiologi-
cally, we invent a framework within which we understand
and interpret human activities [1]. Analogously, in this pa-
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per, we propose a computational model that seeks to un-
derstand human activity from its neural basis to its physical
essence.

Motion underlies all activities; human activities, in fact,
are defined by motion. The rigorous study of motion has
been the cornerstone of physics for the last 450 years, over
which physicists have unlocked a deep, underlying struc-
ture of motion. We employ ideas grounded firmly in funda-
mental physics that are true for the motion of the physical
systems we consider in video.

Using this physics-based methodology, we compute
Hamiltonian Energy Signatures (HES) for the various ob-
jects (either entire objects or the parts of a single object) in-
volved in an activity, thus representing the motion of each
object (or its parts) over the course of an activity as a scalar
time-series. In addition, we develop a new distance met-
ric, called the S-Metric, which also characterizes the global
motion of the object, or the entire scene, with a single, scalar
value (which can also be represented as a series of values
if the total video is broken up into shorter time-segments
since the S-Metric can be shown to be additive). Both the
HES curves and the S-Metric provide a gist of the activity
under consideration and offer a number of advantages for
modeling actions and activities in videos.

In particular, we can show that the S-Metric is a proper
distance measure over a metric space and we can also use
basic physical principles to show that the S-Metric and HES
are invariant under an affine transformation. This allows
us to use the HES and S-Metric to categorize activities
across different applications and domains (sparse/dense ob-
jects, high resolution, low resolution, etc.) in a moderately
view-invariant manner without requiring separate heuristics
(features or representations) for each. The HES and the S-
Metric have distinct properties: the S-Metric can be used
to characterize the entire scene with a single, scalar, global
value; the HES time series, on the other hand, can charac-
terize activities of individual objects.

Since the perception of activities involves the interpreta-
tion of motion by the brain, we embed the above physics-
based motion models within a framework inspired by Neu-
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Figure 1. Feature extraction in V1 and then division along Motion
Energy Pathway (Dorsal) and Form/Shape Pathway (Ventral)

robiology and Neuromorphic Computing (NMC). The
latest models for the perception and interpretation of motion
by the brain are employed to present a novel technique for
the representation and recognition of human actions. The
neural basis for motion recognition, in fact, has garnered
much attention of late.

Recent research, building upon the neurobiology of ob-
ject recognition, suggests the brain uses the same, or at least
similar, pathways for motion recognition as it does for ob-
ject recognition [2, 3, 4, 5]. Visual processing in the brain,
as shown in Figure 1, bifurcates into two streams at V1: a
Dorsal Motion Energy Pathway and a Ventral Form/Shape
Pathway [4, 6]. Although existing neurobiological models
for motion recognition do posit the existence of a coupling
or integration of these two pathways, they leave any specific
mechanism for combination of the two pathways as an open
question [2, 7]. This paper presents computational equiva-
lents of these neurobiological models and applies them to
real problems in computer vision.

Some researchers [8, 3] suggest the motion pathways in-
tegration is similar to object recognition; and since others
[6, 9, 10] studying image-based recognition have been in-
spired by the success of biologically-motivated approaches
for object recognition, we are similarly proposing the appli-
cation of computational models that have proven effective
for object recognition to motion recognition. In particular,
neuromorphic computing [11, 12, 13] builds computational
models for object recognition motivated by neurobiological
pathways.

Building upon this and recent work in the neurobiolog-
ical community which shows the dorsal and ventral pro-
cesses could be integrated through a process of feature in-
tegration [14] or biased competition [15, 16, 17, 18, 19] as
originally outlined by [20, 21], we propose a computational
model for the fusion of the motion energy and form/shape
pathways by representing this integration in a statistical
Multiple Hypothesis Testing (MHT) framework.

Main Contributions: Building upon the fundamental
principles of the physics of motion and the NMC model
of perception, we present a novel framework for the mod-

elling and recognition of actions and activities in video. To-
gether, the HES curves and S-Metric give us an immediate
sense of the gist of the motion energy of an activity since
they are computed using global elements and features. For
the Form/Shape element, we have the freedom to use dif-
ferent features (e.g., Histogram of Oriented Gradients for
low-resolution video and shape/color for high-resolution
video). Finally, we incorporate the Integration module by
using a variant of the neurobiological ideas of feature inte-
gration and biased competition, which we implement using
the MHT framework. This allows for hierarchical recogni-
tion, with gross recognition provided by the motion energy
and a detailed analysis via the form information. Our repre-
sentation provides flexibility since new approaches in low-
level feature extraction can be employed easily within our
framework. We present detailed validation of our proposed
techniques and show results on querying a video database
with complex activities.

2. Related Work
We build liberally upon theoretical thrusts from sev-

eral different disciplines, including Analytical Hamiltonian
Mechanics, Neuromorphic Computing and Neurobiology,
and, of course, image analysis. The models developed for
robotics in [11] provide the basic NMC architecture but are
used more for image recognition and analysis. Similarly,
Energy-Based Models (EBMs) [22] capture dependencies
between variables for image recognition by associating a
scalar “energy” to each configuration of the variables. Still
others [23] take local and global optical flow approaches
and compute confidence measures. Researchers have pro-
posed computational frameworks for integration, e.g., [24],
but they have also been restricted to the analysis of single
images. The use of DDMCMC shown in [25], or its vari-
ants, might be an excellent Integration module application
for future NMC-based research thrusts in situations where
there is sufficient training data available.

In terms of human activity recognition [26], some of the
cutting edge research uses the fusion of multiple features
(e.g., [27]). Their approach to features fusion comes closest
to the idea of combining features that express both the gist
and the saliency, rather than multiple features where both
express only one perspective. Our approach also draws in-
spiration from the method employed in [28], which detects
global motion patterns by constructing super tracks using
flow vectors for tracking high-density crowd flows in low-
resolution. Our methodology, on the other hand, works in
both high- and low-resolution and for densely- and sparsely-
distributed objects since all it requires is the (x,y,t) tracks for
the various objects.

In the Itti-Koch saliency model [13], the so-called
saliency component (which corresponds to the form/shape
pathway) is based on low-level visual features such as lumi-



Figure 2. Proposed Framework for motion recognition by searching a database for a query: final recognition decision is made in the
Integration module

nance contrast, color contrast, orientation, and motion with
dyadic pyramids, while others use SIFT features, Kernel
PCA, Harris corners, etc. [29]. The so-called gist compo-
nent (which corresponds to the motion energy pathway) is
usually computed as a low-level signature of the entire im-
age with dyadic pyramids and Fourier energy [11] or color
and texture or learnt statistical knowledge of the local fea-
tures of the target and distracting clutter [29].

3. Proposed Framework for Activity Modeling
We propose an NMC-inspired approach for recogniz-

ing activities, using the global motion signature of the ob-
jects for the Motion Energy pathway (the Hamiltonian En-
ergy Signatures and S-Metric, discussed below) and Local
features for the Form component (the salient features, dis-
cussed below). The overall approach is shown diagrammat-
ically in Figure 2.

3.1. Motion Energy Pathway: HES and S-Metric

One of the most fundamental ideas in theoretical physics
is the Principle of Stationary Action, also known variously
as Principle of Least Action as well as Hamilton’s Varia-
tional Principle [30]. This is a variational principle that can
be used to obtain the equations of motion of a system and
is the very basis for most branches of physics, from Analyt-
ical Mechanics to Statistical Mechanics to Quantum Field
Theory. We apply the idea of a function whose value re-
mains constant along any path in the configuration space of
the system (unless the final and initial points are varied) to
Newtonian Mechanics to derive Lagrange’s Equations, the
equations of motion for the system being studied.

Following Hamilton’s approach, we define Hamilton’s
Action, S, for motion along a worldline between two fixed

physical events (not events in activity recognition) as:

S ≡
∫ t2

t1

L(q(t), q̇(t), t)dt (1)

with q, the generalized coordinates 1, and L, in this case, the
Lagrangian which, for a conservative system, is defined as:

L = T − U (2)

where, T is the Kinetic Energy and U is the Potential En-
ergy. The Hamiltonian function, derived from Hamilton’s
Variational Principle, is usually stated most compactly, in
generalized coordinates, as [31]:

H(q, p, t) =
∑

i

piq̇i − L(q, q̇, t) (3)

where H is the Hamiltonian, p is the generalized momen-
tum, and q̇ is the time derivative of the generalized co-
ordinates, q. If the transformation between the Cartesian
and generalized coordinates is time-independent, then the
Hamiltonian function also represents the total mechanical
energy of the system:

H(q(t), p(t)) = T (p(t)) + U(q(t)) (4)

In general, we compute (3), which depends explicitly on
time, but we can make the assumption (4) as a first approx-
imation, in which the system can be idealized as a holo-
nomic system, unless we deal with velocity-dependent or
time-varying potentials.2

1Generalized coordinates are the configurational parameters of a sys-
tem; the natural, minimal, complete set of parameters by which you can
completely specify the configuration of the system.

2In fact, even when we cannot make those idealizations (e.g., viscous



Figure 3. Tracks to Hamiltonian to Phase Space: the phase space
of a system consists of all possible values of the coordinates, which
can be (q,p) or (q,p,t), for example; we may also look at modified
phase plots of (H,t), (H,q,p), etc.

3.1.1 Application to Activity Modeling

Starting from these first principles, we develop a method
to extract an abstract representation of the motion of the un-
derlying physical systems we consider in video. The Hamil-
tonian in (3) is exactly what we utilize as the Hamiltonian
Energy Signature (HES) for various objects (either entire
objects or the parts of a single object) involved in an ac-
tivity, thus representing the motion of each object over the
course of the activity as a time series.

For example, if we track a person in video, we can com-
pute these HES curves for the centroid of the person (con-
sidering the person as an entire object) or consider all the
points on the contour of that person’s silhouette, thus lead-
ing to a multi-dimensional time series (which can, for ex-
ample, represent the gait of a person). Note that these HES
curves can be computed in either the image plane, yielding
the Image HES as used in this paper, or in the 3D world,
giving the Physical HES, depending on the application do-
main and the nature of the tracks extracted. In either case,
the Hamiltonian framework gives a highly abstract, com-
pact representation for a system and can yield the energy of
the system being considered under certain conditions.

We thus segment the video into systems and sub-systems
(e.g., whole body of a person, or parts of the body) and, for
each of those, get their tracks, from which we compute T
and U, and use that to get the HES curve signature, which
can then be evaluated further and the results analyzed ac-
cordingly. In the same manner, we compute the S-Metric
from the tracks for the relevant time period by first comput-
ing the L from the T and U, as shown in Figure 3.

We end up with two quantities that provide a global de-
scription of the activity:

1. HES (3), which gives a simple, intuitive expression for
an abstract, compact representation of the system; i.e.,
the characteristic time-series curves for each object

2. S-Metric (1), derived from L, which is the global,
scalar signature of the system, possibly consisting of
multiple objects

A system, in this sense, is defined according to the con-
straints of the video and the activity we are trying to iden-
tify. Thus, a system could be an object, like a car, rep-
resented as a particle, or a group of cars, where each car

flows), we can define “generalized potentials” [31] and retain the standard
Lagrangian, as in (2).

is a sub-system. Or, when the video permits, the system
could be the car itself, with its various elements, the door,
the hood, the trunk, being the sub-systems. Similarly, a hu-
man could be represented as a singular, particulate object
that is part of a system of objects or as a system composed
of sub-systems; i.e., when we can characterize their legs,
arms, hands, fingers, etc. Thus, our approach is to segment
the video into systems and sub-systems (e.g., whole body
of a person, or parts of the body) and, for each of those,
get their tracks, from which we compute T and U, and use
that to get the HES curve signature, which can then be eval-
uated further in phase space 3 and the results analyzed ac-
cordingly, as shown in Figure 2.

Thus, we use the video to gain knowledge of the physics
and use the physics to capture the essence of the system be-
ing observed via the HES and S-Metric. In order to compute
the HES, we use the tracks from the video to compute the
kinematic quantities that drop out of the Lagrangian formal-
ism, thus giving a theoretical basis for examination of their
energy from (x,y,t).

Examples: For example, in the general case when U 6= 0,
the Lagrangian, T - U, of a single particle or object acting
under a constant force, F (e.g., for a gravitational field, g,
F=mg) over a distance, x, is:

L(x(t), ẋ(t)) = 1
2mv2 − Fx

with x = xo + vot + 1
2at2 and a = F

m

(5)

We now use this Lagrangian to calculate Hamilton’s Ac-
tion for the general system:

S =
∫ tb

ta
Ldt =

∫ tb

ta

(
1
2m(v2

o + 2vo
F
m t)− F (xo + vot)

)
dt

= 1
2mv2

o(tb − ta)− Fxo(tb − ta)
(6)

Using Hamilton’s Variational Principle on (6) for a grav-
itational force yields (with y being the vertical position,
which can be determined from the tracks):

H = T +U =
1
2
mv2

o +mgh =
1
2
mv2

o +mg(yb−ya) (7)

Here, as a first approximation, we treat m as a scale fac-
tor and set it to unity; in future, we can estimate mass using
the shape of the object or other heuristics, including esti-
mating it as a Bayesian parameter. In addition, mass is not
as significant when we consider the same class of objects.

For more complex interactions, we can even use any
standard, conservative/non-conservative model for U (e.g.,

3The phase–space of a system consists of all possible values of the
generalized coordinate variables qi and the generalized momenta vari-
ables pi. If the Hamiltonian is time-independent, then phase space is 2-
dimensional, (q,p); if the Hamiltonian is time-dependent, then phase space
is 3-dimensional, (q,p,t) [32].



as a spring with U = 1
2kx2 for elastic interactions,

damped/driven harmonic oscillator for people following,
etc.) whereas, for the simplest case of a free particle, we
are left with just the T; this is equivalent to situations with
videos of activities happening in far-field where we can only
discern the motion of objects on a ground plane and we can-
not imply any relationship between the objects. Even for
these cases, we can also plot Hamilton’s Action vs. time
as the HES curve since the partial derivative of the Action
is energy [30]. In addition, we can compute differences in
the S-Metric between multiple objects by just subtracting
their S Metrics, since Hamilton’s Action can be shown to
be additive.

Advantages: The approach we utilize to compute H and
S is relatively straightforward, as shown in Figure 3: we
find tracks for a scene, construct distance and velocity vec-
tors from those tracks, and use these to compute HES vs.
Time curves for each system or sub-system observed in the
video. These HES curves and S-Metrics thereby yield a
global signature, or gist, for the activity and allow us to
characterize different activities or components of activities.
For comparing the activities of different objects, we use the
S-Metric/HES for each object. Since the HES is already a
time-series, we can compare their characteristic HES curves
using a Dynamic Time Warping (DTW) algorithm. We can
also compare their full-fledged S-Metrics or, when we need
a greater granularity of matches, we can segment the video
into smaller time-intervals and compute the S-Metric piece-
wise for each of them, leading to a time-series in this case
also. The additivity of S allows this and we can use DTW
for matching the S-Metric sequences.

The main advantage of using the Hamiltonian formalism
is that it provides a framework for theoretical extensions
to more complex physical models. In addition, it can be
shown that the Image HES allows us to recognize activities
in a moderately view-invariant manner while the 3D Physi-
cal HES is completely view invariant; the invariance of both
comes from the invariance of the HES to affine transforma-
tions. We show experimental validation of the invariance in
Figure 4.

3.2. Form Pathway: Salient Features

Our construction provides flexibility on the form/shape
pathway since new approaches in low-level feature extrac-
tion can be employed easily within our framework. For the
present work, we use standard centroids, histogram of ori-
ented gradients, and shape or color [33, 34]. In general,
the Neurobiology literature suggests that orientation, shape,
and color might serve as the best form/shape components
[1, 7]. The only caveat is that the form component should
maintain view-invariance so that the NMC model does not
lose the view-invariance afforded by the HES/S-Metric dur-
ing recognition.

Algorithm 1 Overview of the Multiple Hypothesis Testing
(MHT) Algorithm.
Given a query clip, q, and a video DB, identify all occur-
rences of that query clip in the DB. Specifically, segment
the video DB into ci prospective clips whose Form Pathway
normalized similarity measures compete for selection; win-
ning values (those above the Tukey threshold) are then cor-
related with the Motion Energy Pathway normalized simi-
larity measures.

1: Segment the Video DB into ci prospective clips
2: Compute the plot of similarities for the Form path-

way, SForm(q, ci), and Motion Energy pathway,
SMotion(q, ci), by comparing each of the ci prospec-
tive clips to the query clip, q

3: Compute Tukey (T ) for the Form and Motion Energy
distributions; this determines the Accept-Reject thresh-
old for each

4: For each of the p Form similarity measures ≥ TForm,
bias with the q Motion Energy similarity measures ≥
TMotion (set all measures < T to 0)

5: Biasing is implemented as a pointwise correlation on
the normalized similarity measures from Motion En-
ergy and Form⇒ Survivors recognized

3.3. NMC Integration and Activity Recognition

The usual NMC tack is to integrate the form and mo-
tion energy pathways via the integration module, usually
by weighting them. NMC and Neurobiologically-based ap-
proaches have examined different integration methodolo-
gies, including simple pointwise multiplication, as well as
exploring more standard neurobiological integration mech-
anisms such as feature integration [14], in which simple
visual features are analyzed pre-attentively and in parallel,
and biased competition [20, 21], which “proposes that vi-
sual stimuli compete to be represented by cortical activity.
Competition may occur at each stage along a cortical vi-
sual information processing pathway. The outcome of this
competition is influenced not only by bottom-up, sensory-
driven, activity but also by top-down, attention-dependent,
biases”.

We propose a computational approach to Integration that
is a variant of these different methods and develop a compu-
tational framework that approximately mimics the neurobi-
ological models of feature integration and biased competi-
tion [1, 15, 17]. There are a variety of different approaches
that might be useful in simulating this integration. Since
we deal with the case where training data is not available,
we simulate this via a Multiple Hypothesis Testing (MHT)
framework in which we first create “feature maps” [18] us-
ing the form/shape. A feature map is the distribution of
form features with matching peaks using a similarity mea-



Figure 4. KTH Distance Matrix where we highlight the lowest relative values in a row. This shows the matching of similar activities despite
view changes with only a few exceptions to correct matching. Please note this is not necessarily symmetric because we do the analysis
row-wise using training and classification.

sure between features. Then, these are fused via the multi-
ple hypothesis testing framework.

This is accomplished as follows: suppose we are given a
query clip that we want to match with a video database. We
first divide the video into time segments and then compare
each segment to the query clip. This similarity is in a suit-
able feature space; since the similarity measures are over a
time window, they can be expressed as a distribution with a
certain mean. So we need a method to see how significantly
different means are. This is exactly what the Tukey test [35]
does: it is a test that provides a way to determine whether
a set of sample means are significantly different from each
other.

The generalized MHT algorithm is shown in Algorithm
1. In our implementation, we plot the (normalized) similar-
ity measures from the Form Pathway components for each
time window. Then, for each of the peaks, or hypotheses,
we test it with the Tukey. Finally, for those that pass the
Accept-Reject threshold, T, we bias them by doing a point-
wise correlation on normalized similarity measures between
the mode of that sample distribution and the normalized
Motion Energy Pathway gist value. This motion energy
pathway value can be computed using DTW between the
HES curve values of the query clip and potential match or
the S-Metric difference between the query clip and the po-
tential match. Finally, the results of this pointwise multipli-
cation determine how many matches are recognized for the
given query clip and video.

4. Experimental Results

We experimented with videos consisting of people, vehi-
cles, and buildings, which encompasses a large class of pos-
sible activities. We used high-resolution and low-resolution
video from standard datasets like KTH and VIVID. We also
assumed tracking and basic object-detection to be available.
We utilized these (x,y,t) tracks to compute the Kinetic (T)
and Potential (U) energies of the objects (mass can be ide-
alized to unity or computed from shape). The distance and
velocity vectors derived from the tracks are thereby used
to compute both the HES curves and the S-Metrics, which
are then used as the Motion Energy Pathway of the NMC
framework.

For the Form/Shape Pathway, we further used the tracks
to get the histogram of oriented gradients [34] for the
low-resolution case and utilized shape [33] in the high-
resolution case. The histogram of similarities in each time
window was computed. We then utilized Multiple Hy-
pothesis Testing with the Tukey test to set the threshold
for peaks in the distributions that might compete for selec-
tion/matching. We biased these peaks by doing pointwise
multiplication with the motion energy gist computed earlier
to make our final selections/matches.

4.1. Activity Modeling with HES/S-Metric

Here we first show an example of the characteristic HES
curves and apply them to identify an exchange activity in
video, as seen in Figure 5. In this scenario, two people, one
of whom carries a box, approach each other. As they meet,
they exchange the box and continue along their original



(a)

(b) (c)

Figure 5. (a) Box Exchange experiment video: (b) Ideal vs (c)
Actual Hamiltonian curves . Here we see two people exchanging
a box in (a). Plots of the Hamiltonian equations of motion can give
us a sense of the energies associated with this activity, both in the
idealized case (b) and for the experimentally observed case (c).

S(1,2) = 0.05382 S(1,3) = 0.56237 S(2,3) = 0.63720

Table 1. S-Metric Distance between the three cars shows coupling
between Car 1 and Car 2 (with a small distance) and the non-
coupling between the others (showing larger distances).

paths unhindered. Some representative frames are shown
in Figure 5.

Assuming an idealized exchange, a reasonable hypoth-
esis might be to assume that the T and U of each person
were identical, the only difference being the energies, both
kinetic and potential, contributed by the box itself. In such
a case, the energetics of this exchange can be represented as
shown in the HES vs. Time plot in Figure 5, which shows
both the idealized plot (a), where we assume identical peo-
ple walking with identical speeds, as well as the actual, ex-
perimental plot (b).

The second example tracks three cars, where two cars
maintain distance and one starts off together with them and
then veers away, as shown in the frame in Figure 6. Since it
involved more than two objects, we could then utilize the S-
Metric to help characterize the gist of this system. For this
experiment, we see the HES vs. Time curves for the two
cars which follow all the way are highly correlated and the
S-Metric (Table 1) calculated for them shows the coupling
between Car 1 and Car 2 and the non-coupling between the
others.

4.2. View Invariance of HES/S-Metric using KTH

The KTH dataset (http://www.nada.kth.se/
cvap/actions/) contains six types of human actions
(walking, jogging, running, boxing, hand waving, and hand
clapping) performed several times by 25 subjects in four
different scenarios: outdoors, outdoors with scale variation,
outdoors with different clothes, and indoors. All sequences
are taken over homogeneous backgrounds with a static cam-
era with a 25fps frame rate. The sequences are downsam-
pled to a spatial resolution of 160x120 pixels and have a
length of four seconds on average. We use these to demon-

Figure 6. Two cars following; the first car, whose trajectory is la-
beled in orange, is the lead car and executes a U-turn; the second
car, trajectory in blue, follows it and also makes a U-turn, whereas
the third car, whose trajectory is in red, follows it for a while and
then turns away.

strate the view invariance of the Motion Energy Pathway
and present a distance matrix for all six actions in Figure 4.

As can be seen in Figure 4, there is significant matching
between the same activity from different views, with lower
scores indicating greater similarity. There are occasional
exceptions as there are sometimes very few frames (as few
as 10-20) with a sample rate of 25fps (i.e., there are too
few frames for a completely reliable calculation of the HES
curve) and the tracks can be tenuous at times. However,
our model is able to distinguish between different activities,
regardless of view, and matches the same activity, again,
irrespective of the different view. We thus demonstrate the
view invariance of the HES/S-Metric.

4.3. Querying using NMC on VIVID

We now show results on querying a large database
using an example clip in order to provide evidence
that integrating the Motion Energy gist (the HES/S-
Metric) within the NMC framework performs better than
just the Form/Shape alone. The database we use is
the VIVID dataset (http://www.darpa.mil/ipto/
programs/vivid/vivid_approach.asp) and we
consider 6.5 minutes of it. The query clip was obtained from
public domain data (example shown in Figure 6, above)
and was 10 seconds in length. For want of space, we
show results on a particular query, a car making a U-turn.
There were 12 instances of it in the database. We show
the Precision-Recall rates for this query for the Motion En-
ergy Pathway, Form/Shape Pathway, and NMC-inspired In-
tegration approaches in Table 2. As can be seen, the NMC-
inspired approach increases the number of cases that can be
retrieved.



Precision Recall

HES/S-Metric (Motion Energy) 0.62 0.63

HOG (Form) 0.67 0.55

NMC 0.754 0.75

Table 2. Precision, TP/FP, and Recall for Form, Motion Energy,
and NMC

5. Conclusions and Future Work
The NMC-inspired framework and architecture we

present provides a structured approach for a single, uni-
fying framework for activity recognition that only requires
tracks for the motion energy pathway; it is moderately view-
invariant and can easily be generalized across different ap-
plication domains and even applied to coupled systems,
like cars chasing each other, exchanges, or interactions be-
tween sparse objects, and other systems without requiring
separate heuristics for each. Our formulation takes an al-
together novel approach whereby we attempt to create a
theoretical framework inspired by the biological model and
rooted in physics to gain insight into the problem of activity
recognition in video. Future work will study how to ob-
tain robust physics-based features, develop more complex
physics-based models (e.g., using phase-space trajectories
and Poisson Brackets), invert the two pathways’ biasing in
the Integration module, implement various other integration
strategies, and use shape or learning algorithms to deter-
mine mass and potentials.
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